Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 10(3): 203, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814515

RESUMO

Phosphatase and tensin homolog (PTEN) acts as a brake for the phosphatidylinositol 3-kinase-AKT-mTOR complex 1 (mTORC1) pathway, the deletion of which promotes potent central nervous system (CNS) axon regeneration. Previously, we demonstrated that AKT activation is sufficient to promote CNS axon regeneration to a lesser extent than PTEN deletion. It is still questionable whether AKT is entirely responsible for the regenerative effect of PTEN deletion on CNS axons. Here, we show that blocking AKT or its downstream effectors, mTORC1 and GSK3ß, significantly reduces PTEN deletion-induced mouse optic nerve regeneration, indicating the necessary role of AKT-dependent signaling. However, AKT is only marginally activated in PTEN-null mice due to mTORC1-mediated feedback inhibition. That combining PTEN deletion with AKT overexpression or GSK3ß deletion achieves significantly more potent axonal regeneration suggests an AKT-independent pathway for axon regeneration. Elucidating the AKT-independent pathway is required to develop effective strategies for CNS axon regeneration.


Assuntos
Sistema Nervoso Central/fisiologia , Regeneração Nervosa/fisiologia , Nervo Óptico/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Feminino , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nervo Óptico/citologia , Nervo Óptico/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais
2.
Cell Death Dis ; 8(7): e2936, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726788

RESUMO

No therapies exist to prevent neuronal deficits in multiple sclerosis (MS), because the molecular mechanism responsible for the progressive neurodegeneration is unknown. We previously showed that axon injury-induced neuronal endoplasmic reticulum (ER) stress plays an important role in retinal ganglion cell (RGC) death and optic nerve degeneration in traumatic and glaucomatous optic neuropathies. Optic neuritis, one of the most common clinical manifestations of MS, is readily modeled by experimental autoimmune encephalomyelitis (EAE) in mouse. Using this in vivo model, we now show that ER stress is induced early in EAE and that modulation of ER stress by inhibition of eIF2α-CHOP and activation of XBP-1 in RGC specifically, protects RGC somata and axons and preserves visual function. This finding adds to the evidence that ER stress is a general upstream mechanism for neurodegeneration and suggests that targeting ER stress molecules is a promising therapeutic strategy for neuroprotection in MS.


Assuntos
Encefalomielite Autoimune Experimental/prevenção & controle , Fator de Iniciação 2 em Eucariotos/metabolismo , Esclerose Múltipla/prevenção & controle , Neuroproteção , Neurite Óptica/prevenção & controle , Fator de Transcrição CHOP/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Fator de Iniciação 2 em Eucariotos/genética , Camundongos , Camundongos Knockout , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Neurite Óptica/genética , Neurite Óptica/metabolismo , Fator de Transcrição CHOP/antagonistas & inibidores , Fator de Transcrição CHOP/genética , Proteína 1 de Ligação a X-Box/genética
3.
J Neurosci ; 36(21): 5891-903, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225776

RESUMO

UNLABELLED: Axon injury is an early event in neurodegenerative diseases that often leads to retrograde neuronal cell death and progressive permanent loss of vital neuronal functions. The connection of these two obviously sequential degenerative events, however, is elusive. Deciphering the upstream signals that trigger the neurodegeneration cascades in both neuronal soma and axon would be a key step toward developing the effective neuroprotectants that are greatly needed in the clinic. We showed previously that optic nerve injury-induced neuronal endoplasmic reticulum (ER) stress plays an important role in retinal ganglion cell (RGC) death. Using two in vivo mouse models of optic neuropathies (traumatic optic nerve injury and glaucoma) and adeno-associated virus-mediated RGC-specific gene targeting, we now show that differential manipulation of unfolded protein response pathways in opposite directions-inhibition of eukaryotic translation initiation factor 2α-C/EBP homologous protein and activation of X-box binding protein 1-promotes both RGC axons and somata survival and preserves visual function. Our results indicate that axon injury-induced neuronal ER stress plays an important role in both axon degeneration and neuron soma death. Neuronal ER stress is therefore a promising therapeutic target for glaucoma and potentially other types of neurodegeneration. SIGNIFICANCE STATEMENT: Neuron soma and axon degeneration have distinct molecular mechanisms although they are clearly connected after axon injury. We previously demonstrated that axon injury induces neuronal endoplasmic reticulum (ER) stress and that manipulation of ER stress molecules synergistically promotes neuron cell body survival. Here we investigated the possibility that ER stress also plays a role in axon degeneration and whether ER stress modulation preserves neuronal function in neurodegenerative diseases. Our results suggest that neuronal ER stress is a general mechanism of degeneration for both neuronal cell body and axon, and that therapeutic targeting of ER stress produces significant functional recovery.


Assuntos
Glaucoma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Degeneração Retiniana/metabolismo , Resposta a Proteínas não Dobradas , Animais , Estresse do Retículo Endoplasmático , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/metabolismo
4.
Elife ; 5: e14908, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27026523

RESUMO

Injured mature CNS axons do not regenerate in mammals. Deletion of PTEN, the negative regulator of PI3K, induces CNS axon regeneration through the activation of PI3K-mTOR signaling. We have conducted an extensive molecular dissection of the cross-regulating mechanisms in axon regeneration that involve the downstream effectors of PI3K, AKT and the two mTOR complexes (mTORC1 and mTORC2). We found that the predominant AKT isoform in CNS, AKT3, induces much more robust axon regeneration than AKT1 and that activation of mTORC1 and inhibition of GSK3ß are two critical parallel pathways for AKT-induced axon regeneration. Surprisingly, phosphorylation of T308 and S473 of AKT play opposite roles in GSK3ß phosphorylation and inhibition, by which mTORC2 and pAKT-S473 negatively regulate axon regeneration. Thus, our study revealed a complex neuron-intrinsic balancing mechanism involving AKT as the nodal point of PI3K, mTORC1/2 and GSK3ß that coordinates both positive and negative cues to regulate adult CNS axon regeneration.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração , Serina-Treonina Quinases TOR/metabolismo , Animais , Regulação da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos
5.
Nat Commun ; 5: 5416, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25382660

RESUMO

Using mouse optic nerve (ON) crush as a CNS injury model, we and others have found that activation of the mammalian target of rapamycin complex 1 (mTORC1) in mature retinal ganglion cells by deletion of the negative regulators, phosphatase and tensin homologue (PTEN), and tuberous sclerosis 1 promotes ON regeneration. mTORC1 activation inhibits eukaryotic translation initiation factor 4E-binding protein (4E-BP) and activates ribosomal protein S6 kinase 1 (S6K1), both of which stimulate translation. We reasoned that mTORC1's regeneration-promoting effects might be separable from its deleterious effects by differential manipulation of its downstream effectors. Here we show that S6K1 activation, but not 4E-BP inhibition, is sufficient to promote axon regeneration. However, inhibition of 4E-BP is required for PTEN deletion-induced axon regeneration. Both activation and inhibition of S6K1 decrease the effect of PTEN deletion on axon regeneration, implicating a dual role of S6K1 in regulating axon growth.


Assuntos
Axônios/fisiologia , Proteínas de Transporte/fisiologia , Sistema Nervoso Central/fisiologia , Complexos Multiproteicos/fisiologia , Regeneração Nervosa/fisiologia , Fosfoproteínas/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Sobrevivência Celular/fisiologia , Sistema Nervoso Central/citologia , Fatores de Iniciação em Eucariotos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Traumatismos do Nervo Óptico/fisiopatologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/fisiologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...